Investigadores de la Universidad de California (Estados Unidos) han utilizado una herramienta de Google diseñada para conocer la propagación de la gripe en tiempo real para crear un mapa de contagios que incluso puede servir para predecir brotes incluso con una semana de antelación.
Los investigadores han combinado los datos tradicionales de incidencia de enfermedad que llevan a cabo los Centros de Control de Enfermedades (CDC) y los que recopila 'Google Flu Trends', que funciona en más de 25 países y calcula la propagación y gravedad de un brote de gripe en tiempo real a partir de las búsquedas de síntomas a través del famoso buscador.
El trabajo, publicado en la revista 'Nature Scientific Reports', propone un modelo mejorado de ambos sistemas y crea una red de conectividad entre regiones geográficas que describe los patrones de contagio.
'Google Flu Trends tiene errores de precisión. Con este algoritmo podemos optimizar la herramienta para que prevea con precisión y rapidez una epidemia de gripe con una semana de antelación', ha explicado a Sinc Michael Davidson, investigador de la institución estadounidense y autor principal del estudio.
En concreto, el modelo combina la exactitud de los datos recogidos por los centros de control --consultas médicas, registros de ausentismo escolar, llamadas de emergencia o registros farmacéuticos-- con las predicciones a tiempo real que hace 'Google Flu Trends', que recoge datos de hasta dos semanas antes, desde que los usuarios realizan las primeras búsquedas.
Con esta información se crea una red que conecta las diferentes regiones geográficas tanto por su proximidad física como por lo vinculadas que estén mediante medios de transporte. A través de estos datos y de su comparación con los recogidos durante el año anterior, se estudian los patrones de contagio, puesto que los factores que facilitan la propagación son prácticamente invariables de un período a otro.
'La mejor manera de mejorar 'Google Flu Trend' sería trabajar muy estrechamente con Google para incorporar esas mejoras directamente en su algoritmo de búsqueda', según ha reconocido este experto, que defiende que su modelo permitirá dirigir los esfuerzos de prevención, como campañas de vacunación, y tratamiento a la población en riesgo real. Además, conocer los patrones de contagio podría resultar útil para implementar estrategias de control que frenen la epidemia.
'Integrar la información tradicional en lugar de sustituirla por los 'big data' aumenta la eficacia potencial de las campañas', concluye Davidson, quien también asegura que esta mejora puede tener implicaciones en otros muchos modelos epidemiológicos.